Spectrum Efficient Antenna Research

Technology Integration Project

"SPEARTIP"

P. Allan Sadowski IT Manager North Carolina Department of Public Safety North Carolina State Highway Patrol

Disclosure

The information contained in this document is for information purposes only and is not represented to be error free. It is not intended to constitute a promise or contract of any kind. Any information is solely the opinion of the presenter, are given as a courtesy, and does not constitute either an endorsement nor approval by the North Carolina State Highway Patrol or the North Carolina Department of **Public Safety.**

Overview

- Background
- Describe effort
- Describe research
- Challenges
- Benefits

SPEARTIP Background

- The tip of the "SPEAR" an informal label for military personnel actively engaged in battle operations
 - the "front line" troops putting "steel on target"
- SPEARTIP SPectrum Efficient Antenna Research Technology Integration Project
 - Antennas actively putting "bits on target" while simultaneously improving spectrum use
- Communications antennas today are largely passive often compromised to conform to packaging
- SPEARTIP uses active antennas for improved efficiency
 - omni antennas waste power and cause interference

Description of SPEARTIP

- 1. Bio Safety able to direct RF away from users
- 2. Eco conscious less power emitted improves battery life or allows smaller battery
- 3. Spectral efficiency lower power emitted allows greater opportunity to reuse spectrum in given area
- 4. Interference reduction not emitting toward unintended receivers - reduces interference to others
- 5. LPI/LPD reduce energy heard by a intercept receiver... or even detected
- 6. Network redundancy mesh/network node down, steer beam away from failed or stressed node

Description of SPEARTIP

- 7. Improve data throughput cross-polarized signals to increase spectral efficiency/BW
- 8. Fix the altitude problem Satellite/DACA platforms "see" too much ground area, steer and limit beam area to just cover the useful spot
- 9. More efficient coupling of antenna to radio antenna can be "tuned" to environment - more RF energy out
- 10. Wider coverage antenna antenna can be "tuned" to better match the frequency being used - multiband
- 11. Coverage directing energy to needed direction can allow greater coverage from given location

Describe Research

- Not just phased array of antenna elements also using reactive elements and arrays of reactive elements.
 - Research reactive elements for UHF and SHF
 - Benefit of beam steering and polarization control
- Need for standards
 - Antenna control parameters radio queries what antenna can do - antenna tells radio it's capabilities – radio has "cognition" to best use what it's given
 - Like DSA, SPEARTIP requires two radios to coordinate efforts like DSA, what is the "meeting point" (rural, public safety, ad-hoc, mobile, tactical to form a network where no network existed before)

SPEARTIP Challenges

- Form factor and size of arrays of antennas and "re"active elements
 - Tower and vehicle not too bad handheld device a problem
- Location awareness needed for many of the benefits
 - problem of GPS position indoor
 - problem of both ends of link communicating position to each other (pilot link – beacon – other?)
- Standards development needed; otherwise connectors, control message format, signaling format, power delivery – all become proprietary

(Potential) Benefits

- Less interference
- Spectral efficiency (reuse) improvement
- Improved battery life (or smaller batteries)
- Higher data throughput
- Better coverage
- Improved network reliability
- LPI/LPD

Contact Information

Allan Sadowski asadowski@ncshp.org 919-662-4440